A Note on a Priori L-error Estimates for the Obstacle Problem

نویسنده

  • C. CHRISTOF
چکیده

This paper is concerned with a priori error estimates for the piecewise linear nite element approximation of the classical obstacle problem. We demonstrate by means of two onedimensional counterexamples that the L2-error between the exact solution u and the nite element approximation uh is typically not of order two even if the exact solution is in H 2(Ω) and an estimate of the form ‖u − uh‖H1 ≤ Ch holds true. This shows that the classical Aubin-Nitsche trick which yields a doubling of the order of convergence when passing over from the H1to the L2-norm cannot be generalized to the obstacle problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal order finite element approximation for a hyperbolic‎ ‎integro-differential equation

‎Semidiscrete finite element approximation of a hyperbolic type‎ ‎integro-differential equation is studied. The model problem is‎ ‎treated as the wave equation which is perturbed with a memory term.‎ ‎Stability estimates are obtained for a slightly more general problem.‎ ‎These, based on energy method, are used to prove optimal order‎ ‎a priori error estimates.‎

متن کامل

L∞-error Estimates for the Obstacle Problem Revisited

Abstract. In this paper, we present an alternative approach to a priori L∞-error estimates for the piecewise linear nite element approximation of the classical obstacle problem. Our approach is based on stability results for discretized obstacle problems and on error estimates for the nite element approximation of functions under pointwise inequality constraints. As an outcome, we obtain the sa...

متن کامل

FINITE ELEMENT CENTER PREPRINT 2000–12 APosteriori Error Analysis in themaximumnorm for a penalty finite element method for the time- dependent obstacle problem

A Posteriori Error Analysis in the maximum norm for a penalty finite element method for the time-dependent obstacle problem Abstract. We consider nite element approximation of the parabolic obstacle problem. The analysis is based on a penalty formulation of the problem where the penalisation parameter is allowed to vary in space and time. We estimate the penalisation error in terms of the penal...

متن کامل

The Regularization Method for an Obstacle Problem

We give a relatively complete analysis for the regularization method, which is usually used in solving non-diierentiable minimization problems. The model problem considered in the paper is an obstacle problem. In addition to the usual convergence result and a-priori error estimates, we provide a-posteriori error estimates which are highly desired for practical implementation of the reg-ularizat...

متن کامل

A posteriori $ L^2(L^2)$-error estimates with the new version of streamline diffusion method for the wave equation

In this article, we study the new streamline diffusion finite element for treating the linear second order hyperbolic initial-boundary value problem. We prove a posteriori $ L^2(L^2)$ and error estimates for this method under minimal regularity hypothesis. Test problem of an application of the wave equation in the laser is presented to verify the efficiency and accuracy of the method.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016